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Summary: Experimental design requires estimation of the sample size required 
to produce a meaningful conclusion. Often, experimental results are performed 
with sample sizes which are inappropriate to adequately support the conclu- 
sions made. In this paper, two factors which are involved in sample size esti- 
mation are detailed-namely type I (a) and type I1 (p) error. Type I error can 
be considered a “false positive” result while type I1 error can be considered a 
“false negative” result. Obviously, both types of error should be avoided. The 
choice of values for a and p is based on an investigator’s understanding of the 
experimental system, not on arbitrary statistical rules. Examples relating to the 
choice of a and p are presented, along with a series of suggestions for use in 
experimental design. Key Words: Experimental Design-Type I error-Type I1 
error-Sample size-Statistics. 

Statistical methods are often used in scientific 
settings to determine whether experimental results 
are true in general, i.e., whether results obtained 
from an experimental sample can be generalized to 
the population. We are familiar with the phrase 
“the results were significant (p < 0.05) . . .” in the 
scientific literature. For some experimentalists, if 
the results are not “significant,” they are not con- 
sidered worth reporting. To others, statistical anal- 
ysis seems to be a burdensome numbers game that 
is not necessarily related to scientific quality. In 
fact, it is incorrect either to “live and die” by the p 
value or to avoid the use of statistical analysis be- 
cause of potential abuse. With the advent of modern 
statistical software packages (l), p values are ob- 
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tained automatically when one performs a “canned” 
analysis. Unfortunately, the ease of the analysis is 
also its danger in that the experimenter is not re- 
quired to understand the meaning of the results. 
The purpose of this review is to describe the mean- 
ing of the p value, to contrast the p value with sta- 
tistical power, and to describe, by example, the re- 
lationship between the p value and the two types of 
statistical error. [It should be noted that others have 
debated whether the p value should even be used at 
all in the scientific literature (2,3,6,7)!] 

HYPOTHESIS TESTING 

After performing an experiment, one is often in- 
terested in determining whether a “treatment” has 
had an effect. For example, one might wish to de- 
termine whether isometric exercise has a strength- 
ening effect on muscles. Typically, this type of ex- 
periment is performed with an experimental group 
(a group receiving isometric strength training treat- 
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ment) and a control group (a group not receiving 
strength training). At the conclusion of the experi- 
ment, the average strength of the experimental and 
control groups may be compared statistically to de- 
termine whether strength training had an effect on 
muscle strength. The statistical analysis and the re- 
sulting “p” value refers directly to the veracity of 
what is called “the null hypothesis.” 

THE NULL HYPOTHESIS 

The null hypothesis states that there is no (null) 
effect of treatment. In the present example, the null 
hypothesis states that training has no effect on 
strength, or that the strength of the experimental 
group is equal to the strength of the control group. 
In the present example, we have a number of 
choices related to the null hypothesis (Table 1). Ob- 
viously, the null hypothesis can be either true or 
false. Additionally, we can choose to accept or re- 
ject the null hypothesis. This results in four poten- 
tial decisions, two of which are correct and two of 
which are incorrect (Table 1). Suppose, for exam- 
ple, that the null hypothesis is true, i.e., there is no 
difference in strength between experimental and 
control groups. If we accept the null hypothesis, we 
have made the correct decision. If we reject the null 
hypothesis, we have made an incorrect decision. 
We have committed what is known in statistics as 
type I error, rejecting a true null hypothesis. This 
can be viewed in more clinical terms as a “false 
positive” (Table 2). Thus, in our experiment, type I 
error concludes that there is a significant effect of 
strength training when, in fact, there is not. The 
alternate possibility is that the null hypothesis is 
false, i.e., isometric training has a significant effect 
on muscle strength. If we reject the null hypothesis, 
we have again made the correct decision. If we ac- 
cept the null hypothesis, we have made an incorrect 
decision, committing what is known as type I1 er- 
ror, accepting a false null hypothesis. This can be 
viewed in clinical terms as a “false negative” (Ta- 

TABLE 1. Statistical errors related to the 
null hypothesis 

Null hypothesis 

Accepted Rejected 
~~~ 

Null hypothesis 
True Correct decision Type 1 error 
False Type I1 error Correct decision 

TABLE 2. Znterpretation and control of statistical error 

Greek Controlled 
Condition symbol Meaning using 

Type I error a False positive Significance 

Type I1 error P False negative Statistical 
level 

power 

ble 2). We conclude that there is no effect of train- 
ing when, in fact, there is. 

Of course, we would like to commit as few errors 
as possible. We prefer not to commit either type I or 
type I1 error, but it should be clearly pointed out 
that the p value is directly related only to type I 
error, i.e., the p value is simply the probability (de- 
noted a) of commiting type I error in a given exper- 
iment (Table 2). When we state that “the results are 
significant (p < 0.05) . . .,” we are saying that we 
are potentially committing type I error less than 5% 
of the time. The problem with this automatic use of 
p < 0.05 as the level for statistical significance is 
that many times (especially in clinical situations) it 
is not acceptable to commit type I error 5% of the 
time, whereas in other cases we might be willing to 
commit type I error a greater percentage of the time 
(see below). The significance level should actually 
be determined based on its meaning in the context 
of the experiment performed. 

In order to decrease the probability of committing 
type I1 error (denoted p), we must design our ex- 
periment with sufficient statistical power. 

STATISTICAL POWER AND THE CHOICE OF 
SAMPLE SIZE 

While we are familiar with setting limits for type 
I error (by choosing a critical p value), we are not as 
familiar with limiting type I1 error. However, as 
discussed below, controlling type I1 error can be 
equally or more important than type I error. Many 
of us have observed presentations where a small 
sample size was used (e.g., n = 3), statistical anal- 
ysis was performed, and a p  value was obtained that 
was greater than 0.05. The speaker concluded that 
the treatment had no effect. Immediately, a pro- 
testor stated that the sample size was not large 
enough to demonstrate the difference. We may also 
have observed the situation where an individual 
performed an experiment with, say, 10 individuals 
per sample, obtained a p value of around 0.07, and 
was then encouraged to add a few more individuals 
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to the sample in order to achieve statistical signifi- 
cance! In another setting, we may have observed a 
scientist performing an experiment with a small 
sample size comparing a “new” technique to some 
“standard” technique. The scientist, based on a 
high p value, concluded that there was no signifi- 
cant difference between the “new” and “standard” 
methods and that the new method should be used. 
All of these situations can arise when one has not 
considered statistical power in the experimental de- 
sign. Interestingly, a review of 71 “negative” ran- 
domized clinical trials (2) concluded that over one- 
half of the “negative” results were simply a result 
of a lack of sufficient statistical power. 

Statistical power is simply 1 - p, the logical neg- 
ative of type I1 error. If type I1 error is analogous to 
a false negative, i.e., accepting a false null hypoth- 
esis, then power is the probability of not committing 
a false negative. In other words, we want to be sure 
that if we obtain a p value greater than 0.05, we are 
not incorrectly accepting a false null hypothesis. 
We want to be sure we are not committing type I1 
error. In the example stated above, we may wish to 
design the experiment with a power of 95%. In that 
case, we would be 95% sure that if isometric 
strength training had an effect (the null hypothesis 
were false), we would not falsely conclude that it 
did not. 

DESIGNING AN EXPERIMENT OF A 
GIVEN POWER 

Several methods (graphs, tables, equations) have 
been developed that allow the experimenter to set 
the significance level (the critical p value), the sta- 
tistical power, and then to determine the sample 
size required to achieve that design (43). An exam- 
ple of an equation used in such a calculation is 
shown below: 

where n = the sample size, u = the population 
standard deviation, 6 = the difference that is de- 
sired to detect, a = significance level (probability 
of type I error), v = the degrees of freedom, ta,v = 
the t value corresponding to a and v, and P = the 
desired statistical power. Note that as the variabil- 
ity of the population increases (i.e., as u increases), 
the number of observations required also increases. 
This is one reason it is important to minimize all 

controllable sources of error in an experiment. Also 
note that as the magnitude of the treatment effect 
decreases (i.e., as 6 decreases), the sample size also 
increases. This is another way of saying that if an 
experimenter wishes to demonstrate a very small 
difference (a very small treatment effect), a large 
sample size is required. Conversely, if treatment 
effects are very large, a relatively small sample may 
be adequate. It should be mentioned that the actual 
values of u and 6 need not be known. Only their 
ratio need be estimated. In these terms, demon- 
strating a treatment effect that is approximately the 
size of the standard deviation requires a much 
larger sample than demonstrating a treatment effect 
that is several times the standard deviation. 

The procedure used to calculate sample size us- 
ing Eq. (1) is an iterative one. We begin with some 
information about the experiment, make a first 
guess at sample size, calculate the expected sample 
size, make a new, better guess at sample size, and 
calculate the new expected sample size. 

An example of such a process is taken from a 
study by Wenger et al., who studied the treatment 
of flexible flatfoot in children (8). Before performing 
the study, the investigators wished to determine the 
number of subjects required to determine whether 
three different treatment methods were effective. 
The experimental design included one control group 
and three experimental groups. The investigators 
measured radiographic angles of the foot before and 
after treatment. Based on their previous experience 
with radiographic angle measurements on other 
children, they knew that the standard deviation of 
the general population (u) was approximately 4.5”. 
In their clinical judgment, they considered an im- 
provement (6) in the radiographic angle of 4” to rep- 
resent a significant treatment effect. The null hy- 
pothesis in this experiment was that treatment had 
no effect on radiographic angle. Type I error would 
conclude that the treatment had an effect when, in 
fact, it did not. Type I1 error would conclude that 
treatment had no effect when, in fact, it did. The 
investigators decided to accept a type I error fre- 
quency of 5% (a critical p value, or significance 
level, a, of 0.05) and wished to make the power of 
the statistical test 90% (P = 0.9, p = 0.1). 

In order to calculate the required sample size 
given this problem, we first make a rough guess at 
sample size, say n = 10. We must then calculate the 
degrees of freedom, using the following equation: 

-q = a(n - 1) 
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where v = degrees of freedom, a = the number of 
groups, and n = the number of independent obser- 
vations per group. 

Because we have four groups, the degrees of free- 
dom is 4(10-1) = 36. We obtain from a statistical 
table (4) the t value corresponding to a significance 
level of 0.05, 36 degrees of freedom and a signifi- 
cance level of 0.2, 36 degrees of freedom. The cor- 
responding t values are 2.028 and 1.308, respec- 
tively. We enter these values into Eq. (1) and solve 
for n, obtaining n = 28.3. Based on this calculation, 
we now refine our sample size estimate to n = 30. 

FIG. 1. Graphical relationship 
between statistical power, sig- 
nificance level, and sample size 
using Eq. (1) (A) Calculations 
for IT = 4.5" and 6 = 4.0" to rep- 
resent the case where the antic- 
ipated treatment effect is rela- 
tively small. (B) Calculations for 
IS = 4.5" and 6 = 6.4" to repre- 
sent the case where the antici- 
pated treatment effect is rela- 
tively large. Note that, in gen- 
eral, for a large treatment effect, 
the required sample size is 
smaller. 
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We now repeat the calculations using n = 30. The 
degrees of freedom is 4 (30 - l), or 116. The ap- 
propriate t values are 1.980 and 1.289, respectively. 
We recalculate the sample size and n = 27.1. Thus, 
as we refined our guess, sample size converged on 
a particular number. We would probably decide to 
perform the experiment with 30 individuals per 
group. This may require actually entering about 35 
individuals per group to allow for attrition. 

A graph of the relationship between statistical 
power, significance level, and sample size is shown 
in Fig. 1. Note that as either power increases or 

l . I . I . 1 . l . I  

0 10 20 30 10 50 60 10 

Number of Observations (n) 

h 
PL 

I - 
v 

conbtionr: 
u=cs* 
4-6.C 

I I I 1 1 -- 
0 10 20 30 10 50 60 70 

0.5 I 

Number of Observations (n) 

J Orthop Res, Vol. 8, No.  2 ,  1990 



308 R. L. LIEBER 

significance level decreases , sample size increases 
(Figs. 1A and IB). Note also that if a relatively 
small treatment effect is anticipated (6 = 4, Fig. 
lA), a larger sample size is required than if the an- 
ticipated treatment effect is large (6 = 6.4”, Fig. 
1B). For example, suppose that the anticipated 
treatment magnitude were 4” (Fig. 1A) and the de- 
sired statistical power was 90%. Under these con- 
ditions, a sample size of 29 would be required to 
achieve a significance level of a = 0.05, whereas a 
sample size of 41 would be required to achieve a 
significance level of ct = 0.01. 

In summary, in designing this experiment, we 
specified the type I error, the acceptable probability 
that we will commit a false positive. We also estab- 
lished the type I1 error by specifying the power. We 
then computed sample size, given the experimental 
variability and our anticipated treatment effect. 
Having specified both type I and type I1 error, in- 
terpretation of the data is straightforward. If our p 
value exceeds 0.05, we conclude that the treatment 
has no effect. We can be sure that if it is greater 
than 0.05, it is so, not because we have too few 
samples, but because the null hypothesis is indeed 
false. 

NONSTANDARD p VALUES 

A survey of the scientific literature, especially the 
literature related to biology and medicine, reveals 
that an overwhelming majority of investigators set 
the critical p value to 0.05. It should be obvious 
based on the previous discussion that there is noth- 
ing “magic” about a p value of 0.05. The p value of 
0.05 simply indicates that we are willing to commit 
type I error 5% of the time. However, there may be 
situations where the investigator is not willing to 
commit type I error 5% of the time or even 1% of 
the time. In such cases, the critical p value should 
be adjusted accordingly. 

An understanding of the basis for selection of a 
critical p value and statistical power is especially 
important in clinical science. For example, in an 
experiment that attempts to demonstrate a signifi- 
cant improvement in bone strength using a particu- 
lar surgical procedure, if the critical p value is 0.05, 
the investigator is willing to conclude incorrectly 
5% of the time that the surgical procedure has an 
effect even if it actually has no effect. The surgical 
procedure represents a risk to the patient and it also 
represents expense. In such a case, the investigator 

may only be willing to commit type I error 1% of the 
time or a fraction of a percent of the time. In such a 
case, a critical p value of 0.05 may be much too 
high. 

It should also be noted that at times, type I1 error 
may be more important to an investigator than type 
I error. For example, suppose that an experimental 
drug were administered to treat a patient’s blood 
pressure. In this case, type I error would indicate 
that the drug had an effect when in fact it did not. 
The detriment to the patient is that they would take 
a drug that had no effect. While this could represent 
an expense, it may not represent a medical or sci- 
entific problem (assuming the drug had no side 
effect). However, suppose type I1 error were com- 
mitted in the same study. Type I1 error would indi- 
cate that the drug had no effect when in fact it had 
an effect. In this case, an effective drug would be 
withheld from the patient, which could represent a 
large problem. It may be that in this example, the 
power of the test should be 99.9%, while the critical 
p value should only be 0.1. The interpretation of the 
meaning of the p value is therefore paramount in 
selecting its value and in guarding against cookbook 
application of statistical methods. 

SUMMARY 

The results of parametric statistical methods 
(e.g., t tests, analysis of variance, regression) refer 
implicitly to the null hypothesis of the parameters 
tested. It is critical for the experimenter to deter- 
mine, before the experiment is performed, the ac- 
ceptable levels of type I and type I1 error. This can 
only be done if the individual understands the 
meaning of these errors in the context of hidher 
experiment. Type I error is controlled by setting the 
significance level while type I1 error is controlled by 
designing the experiment with sufficient statistical 
power. The following suggestions serve as a guide 
in this aspect of experimental design: (a) Write out 
in words the null hypothesis for your experiment. 
(b) Write out in words the meaning of type I error in 
your experiment. Select the significance level in 
light of the meaning of type I error in your experi- 
ment. (c) Write out in words the meaning of type I1 
error in your experiment. Select the intended power 
of your experiment in light of the meaning of type I1 
error. (d) Estimate your population SD by obtaining 
pilot data. If pilot data are unavailable, estimate the 
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SD based on similar experiments that you have per- 
formed or, if you have no data, use appropriate lit- 
erature values. Insure that experimental variability 
is minimized so that the SD represents the actual 
population variability (not experimental error) en- 
abling you to use as few samples as possible. (e) 
Determine the magnitude of the anticipated treat- 
ment effect and use Eq. (1) to estimate iteratively 
the required sample size. Alternatively, use a sta- 
tistical table or graphical means to estimate sample 
size. 
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